技術(shù)頻道

娓娓工業(yè)
您現(xiàn)在的位置: 中國傳動網(wǎng) > 技術(shù)頻道 > 應(yīng)用方案 > 芯片的未來,靠這些技術(shù)了

芯片的未來,靠這些技術(shù)了

時間:2020-10-15 16:19:57來源:半導(dǎo)體行業(yè)觀察

導(dǎo)語:?人工智能(AI)、車聯(lián)網(wǎng)、5G等應(yīng)用相繼興起,且皆須使用到高速運算、高速傳輸、低延遲、低耗能的先進功能芯片;然而,隨著運算需求呈倍數(shù)成長,究竟要如何延續(xù)摩爾定律,成為半導(dǎo)體產(chǎn)業(yè)的一大挑戰(zhàn)。

  除了先進制程之外,先進封裝也成為延續(xù)摩爾定律的關(guān)鍵技術(shù),像是2.5D、3D和Chiplets等技術(shù)在近年來成為半導(dǎo)體產(chǎn)業(yè)的熱門議題。究竟,先進封裝是如何在延續(xù)摩爾定律上扮演關(guān)鍵角色?而2.5D、3D和Chiplets等封裝技術(shù)又有何特點?

  人工智能(AI)、車聯(lián)網(wǎng)、5G等應(yīng)用相繼興起,且皆須使用到高速運算、高速傳輸、低延遲、低耗能的先進功能芯片;然而,隨著運算需求呈倍數(shù)成長,究竟要如何延續(xù)摩爾定律,成為半導(dǎo)體產(chǎn)業(yè)的一大挑戰(zhàn)。

  芯片微縮愈加困難,異構(gòu)整合由此而生

  換言之,半導(dǎo)體先進制程紛紛邁入了7納米、5納米,接著開始朝3納米和2納米邁進,電晶體大小也因此不斷接近原子的物理體積限制,電子及物理的限制也讓先進制程的持續(xù)微縮與升級難度越來越高。

  也因此,半導(dǎo)體產(chǎn)業(yè)除了持續(xù)發(fā)展先進制程之外,也「山不轉(zhuǎn)路轉(zhuǎn)」地開始找尋其他既能讓芯片維持小體積,同時又保有高效能的方式;而芯片的布局設(shè)計,遂成為延續(xù)摩爾定律的新解方,異構(gòu)整合(Heterogeneous Integration Design Architecture System,HIDAS)概念便應(yīng)運而生,同時成為IC芯片的創(chuàng)新動能。

  所謂的異構(gòu)整合,廣義而言,就是將兩種不同的芯片,例如記憶體+邏輯芯片、光電+電子元件等,透過封裝、3D堆疊等技術(shù)整合在一起。換句話說,將兩種不同制程、不同性質(zhì)的芯片整合在一起,都可稱為是異構(gòu)整合。

  因為應(yīng)用市場更加的多元,每項產(chǎn)品的成本、性能和目標族群都不同,因此所需的異構(gòu)整合技術(shù)也不盡相同,市場分眾化趨勢逐漸浮現(xiàn)。為此,IC代工、制造及半導(dǎo)體設(shè)備業(yè)者紛紛投入異構(gòu)整合發(fā)展,2.5D、3D封裝、Chiplets等現(xiàn)今熱門的封裝技術(shù),便是基于異構(gòu)整合的想法,如雨后春筍般浮現(xiàn)。

  2.5D封裝有效降低芯片生產(chǎn)成本

  過往要將芯片整合在一起,大多使用系統(tǒng)單封裝(System in a Package,SiP)技術(shù),像是PiP(PackageinPackage)封裝、PoP(Package on Package)封裝等。然而,隨著智能手機、AIoT等應(yīng)用,不僅需要更高的性能,還要保持小體積、低功耗,在這樣的情況下,必須想辦法將更多的芯片堆積起來使體積再縮小,因此,目前封裝技術(shù)除了原有的SiP之外,也紛紛朝向立體封裝技術(shù)發(fā)展。

  立體封裝概略來說,意即直接使用硅晶圓制作的「硅中介板」(Silicon interposer),而不使用以往塑膠制作的「導(dǎo)線載板」,將數(shù)個功能不同的芯片,直接封裝成一個具更高效能的芯片。換言之,就是朝著芯片疊高的方式,在硅上面不斷疊加硅芯片,改善制程成本及物理限制,讓摩爾定律得以繼續(xù)實現(xiàn)。

  而立體封裝較為人熟知的是2.5D與3D封裝,這邊先從2.5D封裝談起。所謂的2.5D封裝,主要的概念是將處理器、記憶體或是其他的芯片,并列排在硅中介板(Silicon Interposer)上,先經(jīng)由微凸塊(Micro Bump)連結(jié),讓硅中介板之內(nèi)金屬線可連接不同芯片的電子訊號;接著再透過硅穿孔(TSV)來連結(jié)下方的金屬凸塊(Solder Bump),再經(jīng)由導(dǎo)線載板連結(jié)外部金屬球,實現(xiàn)芯片、芯片與封裝基板之間更緊密的互連。

芯片.jpg

2.5D和3D封裝是熱門的立體封裝技術(shù)。(Source:ANSYS)

  目前為人所熟知的2.5D封裝技術(shù),不外乎是臺積電的CoWoS。CoWoS技術(shù)概念,簡單來說是先將半導(dǎo)體芯片(像是處理器、記憶體等),一同放在硅中介層上,再透過Chipon Wafer(CoW)的封裝制程連接至底層基板上。換言之,也就是先將芯片通過Chipon Wafer(CoW)的封裝制程連接至硅晶圓,再把CoW芯片與基板連接,整合成CoWoS;利用這種封裝模式,使得多顆芯片可以封裝到一起,透過Si Interposer互聯(lián),達到了封裝體積小,功耗低,引腳少的效果。

半導(dǎo)體.jpg

臺積電CoWos封裝技術(shù)概念。(Source:臺積電)

  除了CoWos外,扇出型晶圓級封裝也可歸為2.5D封裝的一種方式。扇出型晶圓級封裝技術(shù)的原理,是從半導(dǎo)體裸晶的端點上,拉出需要的電路至重分布層(Redistribution Layer),進而形成封裝。因此不需封裝載板,不用打線(Wire)、凸塊(Bump),能夠降低30%的生產(chǎn)成本,也讓芯片更薄。同時也讓芯片面積減少許多,也可取代成本較高的直通硅晶穿孔,達到透過封裝技術(shù)整合不同元件功能的目標。

  當然,立體封裝技術(shù)不只有2.5D,還有3D封裝。那么,兩者之間的差別究竟為何,而3D封裝又有半導(dǎo)體業(yè)者正在采用?

  相較于2.5D封裝,3D封裝的原理是在芯片制作電晶體(CMOS)結(jié)構(gòu),并且直接使用硅穿孔來連結(jié)上下不同芯片的電子訊號,以直接將記憶體或其他芯片垂直堆疊在上面。此項封裝最大的技術(shù)挑戰(zhàn)便是,要在芯片內(nèi)直接制作硅穿孔困難度極高,不過,由于高效能運算、人工智能等應(yīng)用興起,加上TSV技術(shù)愈來愈成熟,可以看到越來越多的CPU、GPU和記憶體開始采用3D封裝。

3D封裝.jpg

3D封裝是直接將芯片堆疊起來。(Source:英特爾)

  臺積電、英特爾積極發(fā)展3D封裝技術(shù)

  在3D封裝上,英特爾(Intel)和臺積電都有各自的技術(shù)。英特爾采用的是「Foveros」的3D封裝技術(shù),使用異構(gòu)堆疊邏輯處理運算,可以把各個邏輯芯片堆棧一起。也就是說,首度把芯片堆疊從傳統(tǒng)的被動硅中介層與堆疊記憶體,擴展到高效能邏輯產(chǎn)品,如CPU、繪圖與AI處理器等。以往堆疊僅用于記憶體,現(xiàn)在采用異構(gòu)堆疊于堆疊以往僅用于記憶體,現(xiàn)在采用異構(gòu)堆疊,讓記憶體及運算芯片能以不同組合堆疊。

  另外,英特爾還研發(fā)3項全新技術(shù),分別為Co-EMIB、ODI和MDIO。Co-EMIB能連接更高的運算性能和能力,并能夠讓兩個或多個Foveros元件互連,設(shè)計人員還能夠以非常高的頻寬和非常低的功耗連接模擬器、記憶體和其他模組。ODI技術(shù)則為封裝中小芯片之間的全方位互連通訊提供了更大的靈活性。頂部芯片可以像EMIB技術(shù)一樣與其他小芯片進行通訊,同時還可以像Foveros技術(shù)一樣,通過硅通孔(TSV)與下面的底部裸片進行垂直通訊。

英特爾Foveros技術(shù)概念.png

英特爾Foveros技術(shù)概念。(Source:英特爾)

  同時,該技術(shù)還利用大的垂直通孔直接從封裝基板向頂部裸片供電,這種大通孔比傳統(tǒng)的硅通孔大得多,其電阻更低,因而可提供更穩(wěn)定的電力傳輸;并透過堆疊實現(xiàn)更高頻寬和更低延遲。此一方法減少基底芯片中所需的硅通孔數(shù)量,為主動元件釋放了更多的面積,優(yōu)化裸片尺寸。

  而臺積電,則是提出「3D多芯片與系統(tǒng)整合芯片」(SoIC)的整合方案。此項系統(tǒng)整合芯片解決方案將不同尺寸、制程技術(shù),以及材料的已知良好裸晶直接堆疊在一起。

  臺積電提到,相較于傳統(tǒng)使用微凸塊的3D積體電路解決方案,此一系統(tǒng)整合芯片的凸塊密度與速度高出數(shù)倍,同時大幅減少功耗。此外,系統(tǒng)整合芯片是前段制程整合解決方案,在封裝之前連結(jié)兩個或更多的裸晶;因此,系統(tǒng)整合芯片組能夠利用該公司的InFO或CoWoS的后端先進封裝技術(shù)來進一步整合其他芯片,打造一個強大的「3D×3D」系統(tǒng)級解決方案。

3D積體電路.jpg

  此外,臺積電亦推出3DFabric,將快速成長的3DIC系統(tǒng)整合解決方案統(tǒng)合起來,提供更好的靈活性,透過穩(wěn)固的芯片互連打造出強大的系統(tǒng)。藉由不同的選項進行前段芯片堆疊與后段封裝,3DFabric協(xié)助客戶將多個邏輯芯片連結(jié)在一起,甚至串聯(lián)高頻寬記憶體(HBM)或異構(gòu)小芯片,例如類比、輸入/輸出,以及射頻模組。3DFabric能夠結(jié)合后段3D與前段3D技術(shù)的解決方案,并能與電晶體微縮互補,持續(xù)提升系統(tǒng)效能與功能性,縮小尺寸外觀,并且加快產(chǎn)品上市時程。

  在介紹完2.5D和3D之后,近來還有Chiplets也是半導(dǎo)體產(chǎn)業(yè)熱門的先進封裝技術(shù)之一;最后,就來簡單說明Chiplets的特性和優(yōu)勢。

  除了2.5D和3D封裝之外,Chiplets也是備受關(guān)注的技術(shù)之一。由于電子終端產(chǎn)品朝向高整合趨勢發(fā)展,對于高效能芯片需求持續(xù)增加,但隨著摩爾定律逐漸趨緩,在持續(xù)提升產(chǎn)品性能過程中,如果為了整合新功能芯片模組而增大芯片面積,將會面臨成本提高和低良率問題。因此,Chiplets成為半導(dǎo)體產(chǎn)業(yè)因摩爾定律面臨瓶頸所衍生的技術(shù)替代方案。

  Chiplets就像拼圖一樣,把小芯片組成大芯片

  Chiplets的概念最早源于1970年代誕生的多芯片模組,其原理大致而言,即是由多個同質(zhì)、異構(gòu)等較小的芯片組成大芯片,也就是從原來設(shè)計在同一個SoC中的芯片,被分拆成許多不同的小芯片分開制造再加以封裝或組裝,故稱此分拆之芯片為小芯片Chiplets。

  由于先進制程成本急速上升,不同于SoC設(shè)計方式,將大尺寸的多核心的設(shè)計,分散到較小的小芯片,更能滿足現(xiàn)今的高效能運算處理器需求;而彈性的設(shè)計方式不僅提升靈活性,也能有更好的良率及節(jié)省成本優(yōu)勢,并減少芯片設(shè)計時程,加速芯片Time to market時間。

邏輯芯片.jpg

  使用Chiplets有三大好處。因為先進制程成本非常高昂,特別是模擬電路、I/O等愈來愈難以隨著制程技術(shù)縮小,而Chiplets是將電路分割成獨立的小芯片,并各自強化功能、制程技術(shù)及尺寸,最后整合在一起,以克服制程難以微縮的挑戰(zhàn)。此外,基于Chiplets還可以使用現(xiàn)有的成熟芯片降低開發(fā)和驗證成本。

  目前已有許多半導(dǎo)體業(yè)者采用Chiplets方式推出高效能產(chǎn)品。像是英特爾的Intel Stratix 10 GX 10M FPGA便是采用Chiplets設(shè)計,以達到更高的元件密度和容量。該產(chǎn)品是以現(xiàn)有的Intel Stratix 10 FPGA架構(gòu)及英特爾先進的嵌入式多芯片互連橋接(EMIB)技術(shù)為基礎(chǔ),運用了EMIB技術(shù)融合兩個高密度Intel Stratix 10 GX FPGA核心邏輯芯片以及相應(yīng)的I/O單元。至于AMD第二代EPYC系列處理器也是如此。有別于第一代將Memory與I/O結(jié)合成14納米CPU的Chiplet方式,第二代是把I/O與Memory獨立成一個芯片,并將7納米CPU切成8個Chiplets進行組合。

  總而言之,過去的芯片效能都仰賴半導(dǎo)體制程的改進而提升,但隨著元件尺寸越來越接近物理極限,芯片微縮難度越來越高,要保持小體積、高效能的芯片設(shè)計,半導(dǎo)體產(chǎn)業(yè)不僅持續(xù)發(fā)展先進制程,同時也朝芯片架構(gòu)著手改進,讓芯片從原先的單層,轉(zhuǎn)向多層堆疊。也因如此,先進封裝也成為改善摩爾定律的關(guān)鍵推手之一,在半導(dǎo)體產(chǎn)業(yè)中引領(lǐng)風騷。

標簽: 芯片半導(dǎo)體

點贊

分享到:

上一篇:造成伺服電機抖動的原因及解...

下一篇:9個幽默小段子,讓心情做個有...

中國傳動網(wǎng)版權(quán)與免責聲明:凡本網(wǎng)注明[來源:中國傳動網(wǎng)]的所有文字、圖片、音視和視頻文件,版權(quán)均為中國傳動網(wǎng)(www.connectcrack.com)獨家所有。如需轉(zhuǎn)載請與0755-82949061聯(lián)系。任何媒體、網(wǎng)站或個人轉(zhuǎn)載使用時須注明來源“中國傳動網(wǎng)”,違反者本網(wǎng)將追究其法律責任。

本網(wǎng)轉(zhuǎn)載并注明其他來源的稿件,均來自互聯(lián)網(wǎng)或業(yè)內(nèi)投稿人士,版權(quán)屬于原版權(quán)人。轉(zhuǎn)載請保留稿件來源及作者,禁止擅自篡改,違者自負版權(quán)法律責任。

網(wǎng)站簡介|會員服務(wù)|聯(lián)系方式|幫助信息|版權(quán)信息|網(wǎng)站地圖|友情鏈接|法律支持|意見反饋|sitemap

傳動網(wǎng)-工業(yè)自動化與智能制造的全媒體“互聯(lián)網(wǎng)+”創(chuàng)新服務(wù)平臺

網(wǎng)站客服服務(wù)咨詢采購咨詢媒體合作

Chuandong.com Copyright ?2005 - 2025 ,All Rights Reserved 深圳市奧美大唐廣告有限公司 版權(quán)所有
粵ICP備 14004826號 | 營業(yè)執(zhí)照證書 | 不良信息舉報中心 | 粵公網(wǎng)安備 44030402000946號